Moocable is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Machine Learning with Apache Spark

Description

Explore the exciting world of machine learning with this IBM course. Start by learning ML fundamentals before unlocking the power of Apache Spark to build and deploy ML models for data engineering applications. Dive into supervised and unsupervised learning techniques and discover the revolutionary possibilities of Generative AI through instructional readings and videos. Gain hands-on experience with Spark structured streaming, develop an understanding of data engineering and ML pipelines, and become proficient in evaluating ML models using SparkML. In practical labs, you'll utilize SparkML for regression, classification, and clustering, enabling you to construct prediction and classification models. Connect to Spark clusters, analyze SparkSQL datasets, perform ETL activities, and create ML models using Spark ML and sci-kit learn. Finally, demonstrate your acquired skills through a final assignment. This intermediate course is suitable for aspiring and experienced data engineers, as well as working professionals in data analysis and machine learning. Prior knowledge in Big Data, Hadoop, Spark, Python, and ETL is highly recommended for this course.

Online Courses

Coursera

Machine Learning with Apache Spark

IBM
Affiliate notice

  • Type
    Online Courses
  • Provider
    Coursera

Explore the exciting world of machine learning with this IBM course. Start by learning ML fundamentals before unlocking the power of Apache Spark to build and deploy ML models for data engineering applications. Dive into supervised and unsupervised learning techniques and discover the revolutionary possibilities of Generative AI through instructional readings and videos. Gain hands-on experience with Spark structured streaming, develop an understanding of data engineering and ML pipelines, and become proficient in evaluating ML models using SparkML. In practical labs, you'll utilize SparkML for regression, classification, and clustering, enabling you to construct prediction and classification models. Connect to Spark clusters, analyze SparkSQL datasets, perform ETL activities, and create ML models using Spark ML and sci-kit learn. Finally, demonstrate your acquired skills through a final assignment. This intermediate course is suitable for aspiring and experienced data engineers, as well as working professionals in data analysis and machine learning. Prior knowledge in Big Data, Hadoop, Spark, Python, and ETL is highly recommended for this course.