Moocable is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Machine Learning with TensorFlow on Google Cloud en Español Specialization

Description

¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? ¿Cuáles son las cinco fases para convertir un posible caso práctico en un recurso que pueda aprovechar la tecnología de aprendizaje automático? ¿Por qué es importante no saltarse fases? ¿Por qué las redes neuronales son tan populares? ¿Cómo plantear un problema de aprendizaje supervisado y encontrar una buena solución generalizable mediante un descenso de gradientes y una forma meditada de crear conjuntos de datos? Aprenda a escribir modelos de aprendizaje automático distribuido que escalen en Tensorflow y que brinden predicciones de alto rendimiento. Convierta los datos sin procesar en funciones de una forma que permita al AA aprender características importantes de los datos y aportar una percepción humana para abordar los problemas. Por último, aprenda a incorporar la combinación adecuada de parámetros que desarrolle modelos generalizados y exactos, y conozca la teoría para solucionar determinados tipos de problemas de AA. Experimentará con el AA de extremo a extremo, a partir de la construcción de una estrategia centrada en el AA y el avance hacia el entrenamiento, optimización y producción de modelos con labs prácticos mediante Google Cloud Platform.>>> Al inscribirse en esta especialización acepta los Términos de Servicio de Qwiklabs según lo establecido en las Preguntas Frecuentes, disponibles en el apartado: https://qwiklabs.com/terms_of_serviceOpens in a new tab <<

Microcredentials

Coursera

Free to Audit

2 months at 10 hours a week

Intermediate

Paid Certificate

Machine Learning with TensorFlow on Google Cloud en Español Specialization

Affiliate notice

  • Type
    Microcredentials
  • Provider
    Coursera
  • Pricing
    Free to Audit
  • Duration
    2 months at 10 hours a week
  • Difficulty
    Intermediate
  • Certificate
    Paid Certificate

¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? ¿Cuáles son las cinco fases para convertir un posible caso práctico en un recurso que pueda aprovechar la tecnología de aprendizaje automático? ¿Por qué es importante no saltarse fases? ¿Por qué las redes neuronales son tan populares? ¿Cómo plantear un problema de aprendizaje supervisado y encontrar una buena solución generalizable mediante un descenso de gradientes y una forma meditada de crear conjuntos de datos? Aprenda a escribir modelos de aprendizaje automático distribuido que escalen en Tensorflow y que brinden predicciones de alto rendimiento. Convierta los datos sin procesar en funciones de una forma que permita al AA aprender características importantes de los datos y aportar una percepción humana para abordar los problemas. Por último, aprenda a incorporar la combinación adecuada de parámetros que desarrolle modelos generalizados y exactos, y conozca la teoría para solucionar determinados tipos de problemas de AA. Experimentará con el AA de extremo a extremo, a partir de la construcción de una estrategia centrada en el AA y el avance hacia el entrenamiento, optimización y producción de modelos con labs prácticos mediante Google Cloud Platform.>>> Al inscribirse en esta especialización acepta los Términos de Servicio de Qwiklabs según lo establecido en las Preguntas Frecuentes, disponibles en el apartado: https://qwiklabs.com/terms_of_serviceOpens in a new tab <<