Description
Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. Applied Learning Project Through various lectures, quizzes, programming assignments and exams, learners in this specialization will practice and master the fundamentals of probabilistic graphical models. This specialization has three five-week courses for a total of fifteen weeks. Read more
Probabilistic Graphical Models Specialization
-
TypeMicrocredentials
-
ProviderCoursera
-
PricingFree to Audit
-
Duration4 months at 10 hours a week
-
DifficultyAdvanced
-
CertificatePaid Certificate