Moocable is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Stanford Seminar - Training Classifiers with Natural Language Explanations

Description

Training accurate classifiers requires many labels, but each label provides only limited information (one bit for binary classification). In this work, we propose BabbleLabble, a framework for training classifiers in which an annotator provides a natural language explanation for each labeling decision. A semantic parser converts these explanations into programmatic labeling functions that generate noisy labels for an arbitrary amount of unlabeled data, which is used to train a classifier. On three relation extraction tasks, we find that users are able to train classifiers with comparable F1 scores from 5-100 times faster by providing explanations instead of just labels. Furthermore, given the inherent imperfection of labeling functions, we find that a simple rule-based semantic parser suffices.

The full paper can be found here: https://arxiv.org/abs/1805.03818.

Online Courses

YouTube

Free

26 minutes

Stanford Seminar - Training Classifiers with Natural Language Explanations

Affiliate notice

  • Type
    Online Courses
  • Provider
    YouTube
  • Pricing
    Free
  • Duration
    26 minutes

Training accurate classifiers requires many labels, but each label provides only limited information (one bit for binary classification). In this work, we propose BabbleLabble, a framework for training classifiers in which an annotator provides a natural language explanation for each labeling decision. A semantic parser converts these explanations into programmatic labeling functions that generate noisy labels for an arbitrary amount of unlabeled data, which is used to train a classifier. On three relation extraction tasks, we find that users are able to train classifiers with comparable F1 scores from 5-100 times faster by providing explanations instead of just labels. Furthermore, given the inherent imperfection of labeling functions, we find that a simple rule-based semantic parser suffices.

The full paper can be found here: https://arxiv.org/abs/1805.03818.